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Abstract

In this article, a conservative least-squares polynomial reconstruction operator is applied to the discontinuous Galerkin
method. In a first instance, piecewise polynomials of degree N are used as test functions as well as to represent the data in each
element at the beginning of a time step. The time evolution of these data and the flux computation, however, are then done with
a different set of piecewise polynomials of degree M > N, which are reconstructed from the underlying polynomials of degree
N. This approach yields a general, unified framework that contains as two special cases classical high order finite volume (FV)
schemes (N = 0) as well as the usual discontinuous Galerkin (DG) method (N = M). In the first case, the polynomial is recon-
structed from cell averages, for the latter, the reconstruction reduces to the identity operator. A completely new class of numer-
ical schemes is generated by choosing N # 0 and M > N. The reconstruction operator is implemented for arbitrary
polynomial degrees N and M on unstructured triangular and tetrahedral meshes in two and three space dimensions.

To provide a high order accurate one-step time integration of the same formal order of accuracy as the spatial discret-
ization operator, the (reconstructed) polynomial data of degree M are evolved in time locally inside each element using a
new Jocal continuous space-time Galerkin method. As a result of this approach, we obtain, as a high order accurate pre-
dictor, space-time polynomials for the vector of conserved variables and for the physical fluxes and source terms, which
then can be used in a natural way to construct very efficient fully-discrete and quadrature-free one-step schemes. This fea-
ture is particularly important for DG schemes in three space dimensions, where the cost of numerical quadrature may
become prohibitively expensive for very high orders of accuracy.

Numerical convergence studies of all members of the new general class of proposed schemes are shown up to sixth-order
of accuracy in space and time on unstructured two- and three-dimensional meshes for two very prominent nonlinear hyper-
bolic systems, namely for the Euler equations of compressible gas dynamics and the equations of ideal magnetohydrody-
namics (MHD). The results indicate that the new class of intermediate schemes (N # 0,M > N) is computationally more
efficient than classical finite volume or DG schemes.
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Finally, a large set of interesting test cases is solved on unstructured meshes, where the proposed new time stepping
approach is applied to the equations of ideal and relativistic MHD as well as to nonlinear elasticity, using a standard high
order WENO finite volume discretization in space to cope with discontinuous solutions.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The idea of applying a reconstruction operator to the DG method in order to enhance accuracy was first
introduced by Cockburn et al. [16] and further developed by Ryan et al. [62]. However, they applied the recon-
struction operator only at the final output time and therefore called their method a postprocessing technique
for DG. Obviously, this kind of accuracy enhancement becomes problematic on reasonably coarse meshes in
space and time for general nonlinear time dependent problems, where discretization errors (temporal and spa-
tial errors) necessarily accumulate during time stepping and thus information that is once lost due to any kind
of discretization error can never be completely recovered. Therefore, Dumbser and Munz [25,31] were the first
to propose the application of a reconstruction operator to the DG scheme at the beginning of each time step.
The advantages of the proposed tensor product reconstruction on Cartesian grids were: First, the formal order
of accuracy of a DG scheme using basis functions of degree NV was increased to 3N + 3. Second, the resulting
reconstructed DG scheme could be directly applied to the diffusion equation by simply using a central flux
formulation, yielding a much larger stability limit than the classical local DG schemes [19,21]. Another pos-
sibility to combine the DG method with a reconstruction operator in order to discretize diffusion equations
can also be found in the recent work by van Leer and Nomura [80]. Nonlinear versions of reconstruction oper-
ators are also applied to DG schemes in order to serve as limiters, as in the HWENO approach introduced by
Qiu and Shu [59,60] and as also recently furthered by Balsara et al. [5].

In this article, we propose a linear, i.e. a non-data dependent, reconstruction operator for DG schemes on
general unstructured triangular and tetrahedral meshes in two and three space dimensions, respectively. A
nonlinear version of this reconstruction operator is already available in form of a WENO method in the pure
finite volume context [28,29] and will be extended to the full general new class of methods in subsequent work
since it would be out of the scope of this article to deal with nonlinear reconstruction operators for the general
case.

The reconstruction is applied to polynomials of degree N, spanned by orthogonal basis functions &; and
generates piecewise polynomials of any degree M > N, spanned by hierarchical orthogonal basis functions
¥,. The basis functions ¥, are chosen such that up to degree N they coincide with the basis functions @,
and that the functions ¥, with degree larger than N are orthogonal to all @,. Furthermore, general conserva-
tion of all degrees of freedom up to degree N is imposed. These particular properties of the proposed recon-
struction operator will be of significant importance for the resulting numerical scheme. In the following, we
use the notation PyPy, for reconstructed DG schemes using Nth degree test functions and original basis func-
tions and Mth degree reconstruction polynomials that are used for time integration and flux evaluation. It is
obvious that in this proposed general framework of using a reconstruction operator together with DG
schemes, the special case of choosing N = 0 yields classical (high order) finite volume schemes and that the
choice N = M is equivalent to the classical discontinuous Galerkin method. In the latter case, the reconstruc-
tion reduces to the identity operator. For N # 0,N > M we obtain a new class of numerical methods from
third-order of accuracy upwards, that could be either denoted as Hermite finite volume schemes or recon-
structed discontinuous Galerkin methods. For a graphical illustration of the different methods and their rela-
tionships, see Fig. 1. Note that nonlinear HWENO versions of the PP, and P, P; schemes have already been
developed for structured meshes by Balsara et al. [5].

For the construction of a high order one-step time discretization that is automatically of the same order of
accuracy as the space discretization, we propose a new approach that evolves the (reconstructed) polynomials
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Fig. 1. Classification of the proposed Py P, schemes. The leftmost branch (N = 0) coincides with standard finite volume schemes and the
rightmost branch (N = M) with classical DG schemes. From third-order on, there is a new class of intermediate schemes in between those
branches.

of degree M locally inside each element using a local weak formulation of the governing PDE in space-time,
which is approximated by a local continuous space—time Galerkin method. This approach is more general than
those based on an analytic or semi-analytic version of the Cauchy—Kovalewski or Lax—Wendroff procedure,
such as the original ENO scheme of Harten et al. [44], the ADER approach of Toro et al.
[73,70,74,64,71,72,49,32,68,28,29] and other Cauchy-Kovalewski procedure based methods [34,58,57,53,37].
The continuous local space-time Galerkin method used in this article has lower computational complexity
and is substantially easier to implement than the local discontinuous space—time Galerkin method introduced
recently by Dumbser et al. for hyperbolic balance laws with stiff source terms [26]. Within the proposed con-
tinuous space-time Galerkin approach a full set of space-time polynomials is produced for the conservative
variables as well as for the physical fluxes of the governing PDE. This allows the construction of quadrature-
free, see [2], one-step schemes for nonlinear PDE that only solve one Riemann problem per element interface,
independent of the order of accuracy of the scheme. Using the evidence of a numerical von-Neumann stability
analysis we will show that the stability of the resulting reconstructed PyP,, DG schemes depends only on the
degree N of the test functions and not on the degree M of the reconstructed polynomials. This means, in con-
trast to usual DG schemes, that the explicit time step limit is not restricted by the final order of the method
(except for the case N = M), but by the degree of the underlying data representation.

The three key points of the proposed schemes, which also serve as guiding themes for this article, are: first
of all, the construction of the new general reconstruction operator for PyP,, DG schemes on unstructured tri-
angular and tetrahedral meshes (Section 2). Second, the new time discretization method (Section 3). Third,
using the previous two ingredients, the construction of efficient quadrature-free and fully-discrete one-step
schemes (Section 4). A detailed analysis of the linear stability as well as the accuracy and efficiency of the pro-
posed schemes are shown in Section 5. In Section 6 we underscore the generality of the proposed new time
discretization compared to previous Cauchy—Kovalewski procedure based one-step methods and will apply
the nonlinear WENO finite volume version (N = 0) of our schemes to three complicated and challenging
hyperbolic systems, namely the ideal and relativistic MHD equations and the equations of nonlinear elasticity.
In Section 7 we give a conclusion with outlook towards future work.

2. The Py P, reconstruction operator on unstructured meshes

The main ingredient of the proposed PyP, discontinuous Galerkin schemes is a direct extension of the
reconstruction algorithm proposed in [28,29] for finite volume schemes. The computational domain Q is dis-
cretized by conforming elements 7", indexed by a unique mono-index m ranging from 1 to the total number
of elements E. The elements are chosen to be triangles in 2D and tetrahedrons in 3D. The union of all elements
is called the triangulation or tetrahedrization of the domain, respectively,
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To=JT™. (1)

As usual also for standard DG schemes, the numerical solution u, of the vector of conserved quantities is rep-
resented at the beginning of a time-step by piecewise polynomials of degree N inside an element as a sum of
degrees of freedom 12!(7”7) and the space-only dependent basis functions of degree N as follows:

W (E, ) = il ()i (8, (2)

where E = (& n, C)T are the spatial coordinates in a reference coordinate system, see Fig. 2, where also the ref-
erence elements 7y are defined. The equations for the transformation can be found in [28,29]. As short nota-
tion for the mapping and its inverse mapping from & = (&,5,{) toX¥ = (x,y,z) and vice versa with respect to the
element 7™, we simply write

F=31",8, E=Er1™ 3). (3)
Via the inverse mapping given in (3) for the vector &, the element 7™ is transformed to the unit element T,
whose volume is | 7| = 1 in two dimensions and |T;| = 1 in three space dimensions, respectively. Furthermore,

ax,-
ij = aéj (4)

J

is the Jacobian matrix of the transformation and |J| = |J;;| its determinant, being equal to twice the triangle’s
surface in 2D and equal to six times the tetrahedron’s volume in 3D. Throughout the paper we use classical
tensor notation, which implies summation over each index appearing twice.

In our proposed approach, we now apply a reconstruction operator on these data in order to achieve an
even higher order of accuracy for the spatial discretization. At time ¢ the reconstructed numerical solution
w, of the conserved variables is written for element 7 as

wim (€, ) = Wi ()P (8), (5)

where the reconstruction basis functions ¥; are polynomials of degree M > N. The index / ranges from 1 to its
maximum value Ly in Eq. (2), and to Ly, in Eq. (5), where Ly and L, are the numbers of degrees of freedom in
d space dimensions, e.g. Ly =4 (M +1)- (M +2)-...- (M +d). We use the hierarchical orthogonal recon-
struction basis functions that are given, e.g. in [14,24], for triangles in 2D and tetrahedrons in 3D. In the fol-

lowing, we will drop the time argument from the notation of the degrees of freedom, meaning 11[(7’1") = A;’,”)(I”)

and wz(,',") = w;’,")(t") for the sake of compactness. In this paper the two operators

— — —

(f.g) = / / (G0 @) dr  [f.g]= / (1) gE.0)de (6)

denote, respectively, the scalar products of two functions f and g over the space-time reference element
T x [0; 1] and the spatial reference element 7r. We choose the functions @; and ¥, so as to satisfy the follow-
ing properties:

T 1 2 £

Fig. 2. Transformation from the physical triangle and tetrahedron 7 to the canonical reference triangle Tz with nodes (0,0), (1,0) and
(0,1) and the canonical reference tetrahedron Ty with nodes (0,0,0), (1,0,0), (0,1,0), (0,0,1).
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(p[ = lP[ for 1 < / < LN, (7)
[V, P, =0 Vm, Vn, with m # n.

The reconstruction basis functions ¥; and the basis functions &, representing the data are equal up to degree
N, and the reconstruction basis functions ¥, of degree larger than N are chosen to be orthogonal to the @,.
For performing the reconstruction on element 7™, we now choose a reconstruction stencil

s = Jr0®) 8)
k=1

that contains a total number of n, elements. Here 1 < & < n, is a local index, counting the elements in the sten-
cil, and j = j(k) is the mapping from the local index k to the global indexation of the elements in 7 o. We set by
definition j(1) = m and thus the first element in the stencil (k = 1) is always the considered element 7™ for
which reconstruction is to be done. For ease of notation, we write in the following only j, meaning
j = j(k). The reconstruction technique presented here follows closely the ones presented in [28,29].

We then apply the inverse mapping (3) with respect to element 7 to all the elements 7) € S™, where the
transformed elements are in the following denoted as 7V). We emphasize that for all elements 7 € S™ the
mapping with respect to the first element in the stencil is applied, so m is constant for each stencil and therefore
the applied mapping formula is the same for all elements in S". We note in particular that the transformed
element of the first element in the stencil is of course the canonical reference element, hence T i) = 7 = T
The stencil transformed in that way is denoted as S = J T"), see examples in [28].

The reconstruction relies on L,-projection and through the choice of the basis automatically yields a gen-
eralized conservation property for all degrees of freedom inside element 7™ up to degree N. In the physical
coordinate system we have for each conserved variable u,

[, e @rn i = [ o @ p)ar v e s, (9)
ha®l 70)

Eq. (9) expresses a weak form of the identity of the reconstructed solution w, of degree M and the original
numerical solution u, of degree N in all elements of the stencil. After transformmg all elements of the stencil

using (3) and taking into account that the degrees of freedom W ,) and i , ) do not depend on space, we obtain
the intermediate result

[y /~ &, dE = |J i) /~ @ 0,d¢ VTV € ™
TU) TU)

The Jacobian determinant appears on both sides of Eq. (10) and thus cancels out. Please note that this is only
possible for triangles and tetrahedrons with straight edges, to which we restrict ourselves in this paper. General
polyhedral elements or curved boundaries are not considered here. The canceling of the Jacobian determinants
automatically cancels scaling effects of the problem and avoids ill-conditioned reconstruction matrices as re-
ported by Abgrall [1]. During the reconstruction step, the basis polynomials are continuously extended over
the whole stencil. In more detail, this extension means that during reconstruction the polynomial term given
by ¥, Q 1s not only valid inside the reference element 7, but also in all the other elements in the transformed
stencil S™. After the reconstructed polynomlal for element 7" has been obtained, the basis polynomials are
again restricted to the considered element T™ . We emphasize that the integration on the left-hand side has to
be done over the transformed elements TY). In order to do this integration we perform another coordinate
transformation to a second reference coordinate system using the vertices of the transformed element 70
as parameter of another mapping from the first ¢ —» — ( reference system to the second & — 7 — C reference
coordmate systern For convenience, we denote E = (é 7, C) The mapping and its inverse are then denoted as

and the Jacobian determinant of this mapping is denoted as |j |. Thus, Eq. (10) becomes after the second
transformation

iy / B (E(TV,2) P, (E(TY), E))dEdpdl = i) / O (E(TV,E))@,({(TV, E))dEdidl VTV € S

E (11)
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In order to compute the integral on the left-hand side in (11), we use classical multidimensional Gaussian
quadrature of appropriate order. For an exhaustive overview of such multidimensional quadrature formulae
see [67]. The integral on the right-hand side is the standard mass-matrix, which is diagonal for the chosen
orthogonal basis functions @;.

The reconstruction equations constituted by (11) are solved according to the least squares approach pre-
sented in detail in [28]. Here, we indicate only the modifications that have to be carried out. The number
of reconstructed degrees of freedom is L), and per element Ly degrees of freedom are stored. Therefore, we
need at least n, = % elements in each reconstruction stencil. From this expression for 7, it is immediately clear
that the reconstructed PyP,, DG schemes need much smaller stencils than classical finite volume schemes,
which makes the PyP,, schemes very compact for N > 0.

On unstructured meshes, we are forced to use more elements than the necessary minimum for stability pur-
poses. The use of enlarged reconstruction stencils for robustness purposes has already been reported previ-
ously in the literature in the context of finite volume schemes, sece e.g. [8,54,49]. We typically choose two
times more elements in 2D and three times more but at least 12 elements in 3D. In the general case, the
Py Py, reconstruction leads to very compact stencils, as for HWENO schemes [59,60,5], hence we can admit
this quite generous choice for the stencil size. Since (11) becomes overdetermined with the choice
n. > Ly /Ly we use a constrained least-squares technique in order to solve (11) respecting conservation of
all degrees of freedom up to degree N in the first element 7" of the stencil, i.e. we require

Wi =il for 1 <1< Ly. (12)
Eq. (12) in particular also guarantees conservation of the cell average and Eq. (11) has to be solved with con-
straint (12) only once for each element in a preprocessing stage and the resulting matrices can be inverted ana-
lytically and then stored. The resulting M-exact PyP), least squares reconstruction can be interpreted as a
generalization of the k-exact reconstruction proposed for pure finite volume schemes by Barth and Frederick-
son in their pioneering work [8].

From the generalized conservation property (12) and the properties of the reconstruction basis functions (7)
we have for all elements 7" that w, = u, +r, and r, L u,. Hence,

Wp, tp] = [, 1) (13)

3. The local space-time continuous Galerkin method
3.1. Review of solution techniques for the high order Riemann problem

Finite volume and discontinuous Galerkin finite element methods make use of numerical fluxes at the inter-
face of each element. The classical method of Godunov [39] computes these fluxes by solving the classical Rie-
mann problem, i.e. the Cauchy problem for a system of homogeneous conservation laws, with initial condition
consisting of two constant states separated by a discontinuity at the origin. In this manner one obtains a first-
order accurate method, which is in fact the best first-order method that is also monotone.

Higher-order methods can be constructed by considering higher-order spatial representations of the data,
either stemming from a reconstruction procedure as in the finite volume framework, or available directly from
a high order polynomial data representation in each element as in the DG framework, or a combination of
both, as presented in this paper. This leads in a very natural way to the definition of the high-order Riemann
problem (also called the Generalized Riemann problem or the Derivative Riemann Problem). This is the Cau-
chy problem for the relevant PDEs in which the initial condition consists of two piecewise smooth functions,
separated by a discontinuity at the origin.

It appears as if the first author to consider a high-order Riemann problem was Kolgan [50]. He used a
monotone piecewise linear polynomial reconstruction, followed by the solution of the classical Riemann prob-
lem at the interface for the boundary extrapolated values. Kolgan, however, did not include a local time-evo-
lution of the data, resulting in a linearly unstable method, which is second-order accurate in space, but only
first-order accurate in time.
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Amongst the many contributions to the subject, since then, there are two main lines of thought. The first is
the so-called GRP (Generalized Riemann Problem) method of Ben-Artzi and Falcovitz [9]. They solved the
high-order Riemann problem with piecewise linear polynomials, whereby the approximate solution was given
as a time power series expansion right at the interface, thus providing a numerical flux for a second-order
Godunov-type method.

The other approach of interest is provided by the second-order MUSCL scheme by van Leer [77,78]. This
scheme, also attributed by van Leer to Hancock [79], may be viewed as using a solution of the high-order Rie-
mann problem (piece-wise linear polynomial data) that first includes an evolution of the initial condition via
the application of the Cauchy—Kovalewski procedure followed by an interaction of the evolved data via a clas-
sical Riemann problem solution. Due to the time evolution phase, the MUSCL scheme of van Leer is second-
order accurate also in time and linearly stable, in contrast to Kolgan’s method.

Extensions of the first approach, that of Ben-Artzi and Falcovitz, were then formulated by several authors
such as for example [35,10,36]. These studies were mainly concerned with theoretical aspects of the high-order
Riemann problem.

The work of Harten and collaborators [44] may be interpreted as an extension of the second approach,
namely the MUSCL scheme of van Leer and Hancock [77-79]. They also evolved the data via the Cauchy—
Kovalewski procedure resolving the interaction of the evolved data at the interface via the classical Riemann
problem. Harten’s work produced fully discrete one step finite volume schemes of theoretically arbitrary order
of accuracy in space and time.

In the late 1990s Toro and collaborators returned to the approach of Ben-Artzi and Falcovitz. This effort
resulted in what they called ADER schemes [73] (for Arbitrary Accuracy DERivative Riemann problem).
These schemes solve the high-order Riemann problem approximately at the interface. For non-linear systems
with source terms a semi-analytical solver was first proposed by Toro and Titarev, see [74,71,72]. This solver
generalizes the time power series expansion at the interface proposed by Ben-Artzi and Falcovitz. The deter-
mination of all the high order terms of the series involves the application of the Cauchy-Kovalewski proce-
dure and the solution of classical linear Riemann problems for the all-order spatial derivatives of the vector of
unknowns. The resulting ADER schemes (available for both, the finite volume and the discontinuous Galer-
kin framework) are, like Harten’s schemes, one-step fully discrete and of arbitrary order of accuracy in space
and time, see e.g. [73,70,74,64,33,71,72,49,32,68]. The original version of the ADER method, however, needs
Gaussian quadrature in space and time in order to compute the fluxes at the interface. In [28,29], the authors
proposed a quadrature-free version of the scheme (i.e. not using numerical flux integration but analytical flux
integration at the boundary) of arbitrary accuracy in space and time on unstructured meshes in two and three
space dimension. This version of the ADER schemes is more similar to the original ENO scheme proposed by
Harten et al., since it first evolves the data in each element via the Cauchy—Kovalewski procedure and then
solves the interactions at the boundary. To obtain a quadrature-free version of the scheme, all the space-time
information produced by the Cauchy—Kovalewski procedure has been used, which was neither done in the
original ENO scheme of Harten et al. nor in previous ADER schemes. For DG schemes, a very efficient fully
discrete Cauchy—Kovalewski based approach, similar to the one of Harten ef al [44], has been introduced
recently in [53,37].

In a recent paper, Castro and Toro [12] have re-interpreted the schemes of van Leer and Harten et al. in the
framework of the solution of the high-order Riemann problem at the interface and systematically compared
various different possible semi-analytical methods based on the Cauchy-Kovalewski procedure for solving the
high-order Riemann problem. They found that for linear hyperbolic systems, all approaches coincide.

We note that the main inconvenience induced by the Cauchy—Kovalewski procedure is that it may quickly
become very complex for general hyperbolic systems in multiple space dimensions and at higher order of accu-
racy, although for very important systems like the Euler [32,29], MHD [68] and Navier-Stokes [37] equations
this procedure is available for any order of accuracy due to modifications of a semi-analytic algorithm orig-
inally developed by Dyson [34].

An alternative solver for the high-order Riemann problem has recently been proposed by Dumbser et al.
[26]. This is an entirely numerical solver that starts from the Harten approach of evolving the data inside each
element in a predictor step. But instead of using the strong, differential, form of the governing PDE for data
evolution, i.e. instead of using the semi-analytical Cauchy—Kovalewski method, the weak, integral, form of the



8216 M. Dumbser et al. | Journal of Computational Physics 227 (2008) 8209-8253

governing PDE in space-time is used to evolve the data numerically. This is done using a new local space-time
discontinuous Galerkin approach, different from the global space-time DG schemes introduced by van der
Vegt and van der Ven [75,76]. The local space-time approach presented in [26] results in small local nonlinear
algebraic systems to be solved, compared to the globally implicit formulation of the space-time DG approach
presented in [75,76]. Then, the interaction of the evolved data at the desired time ¢ = 7 requires the solution of
the classical Riemann problem. The advantages of this numerical variant are twofold: (i) one avoids com-
pletely the cumbersome Cauchy—Kovalewski procedure, resulting in great generality and (ii) one can treat stiff
source terms properly, reconciling the usually incompatible concepts of high accuracy and stiffness.

Although the new local space-time DG scheme presented in [26] is very successful for stiff problems and
also applicable to very general hyperbolic systems, it is computationally more expensive compared to the Cau-
chy—Kovalewski procedure. In the space—time DG framework [75,76] the initial condition is imposed only in a
weak form, which leads to a large number of degrees of freedom to solve for. For non-stiff problems, the extra
degrees of freedom allowing the numerical solution of the local space-time DG scheme to be different at time
t = 0" from the initial condition at time ¢ = 0 are not important, since for non-stiff problems the numerical
solution will usually exhibit only very small jumps between ¢ = 0 and ¢ = 0". Therefore, we now propose to
use a local continuous space—time Galerkin machinery to evolve the data inside each element in order to obtain
smaller algebraic systems that, as has turned out in our research, can be solved very efficiently by a simple
iteration scheme.

3.2. Weak local space—time formulation

In this article we consider nonlinear time-dependent hyperbolic systems of conservation laws of the
form

G 0 0
a2 T f,,+ gp—i—@ hy =S,, (14)
where u,, is the vector of conserved variables, f, = f,(4,), g, = g,(u,) and h, = h,(u,) are the nonlinear fluxes

and S, = S,(u,) is a nonlinear but non-stiff algebraic source term. In this paper, only the non-stiff case is con-
sidered, for the robust and accurate treatment of stiff sources we refer the reader to [26]. Introducing the local
time T = (¢ — ")/ At and the coordinate transformation (3), we first rewrite the governing PDE (14) in the ref-
erence coordinates &, , { and 7 as

a a o .
v+ aels f +5 a—chp s (15)
with
= At(fpée + 8,8, + C2), g, = At(fpn, + g, + ), by = At(f,0 + 8,0, + hpll),
S) = AtS,. (16)

We now multiply (15) with space and time dependent test functions 6, = ek(E, 7) and integrate over the space—
time reference element 7 x [0; 1]:

<0k7%up> <0kaaa£f > + <0k7a_ang;> <9k7 C > = <0k7S;> (17)

The numerical solution of (17) in space-time, denoted by U/, as well as the fluxes and the source terms are
approximated using the same space-time basis functions 6, as used for the test functions, i.e.

—

Uy(E,7) = U0 7), Sp(E 1) =8,0iE 1), Fo(& 1) =F,0n),
gp(z, ) glpel(E T) Hp(za T) = 7?(1,;91(27 T)a (18)

where we use classical tensor index notation, implying summation over indices appearing twice. For the de-
grees of freedom, the same transformation (16) for the fluxes and source terms holds, i.e.
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‘/7}7;; = At(‘%lpéx + /g\lpéy + ﬂl{)é)v E?p = AI(JA:MIX + alp”ly + ”/:(][7112)7

7/:[717 = At(%lpgx + /g\[pr + ﬁlpCz), 327 = Atglp. (19)
Inserting (18) into (17) yields
0 ~ -~ 0 ~
<9k,a€);>bl;p + <0k’6f >.7-",p + <9k,§0,> <0k’6C > = (0k, 01)S},- (20)

The matrices arising in equation system (20) are the temporal stiffness matrix K}, the mass matrix My, and the
spatial stiffness matrices K;,, K}, and K3, defined as follows:

) d ; 3 , d v d
K}, = <9k7a—31>, My = (0:,0)), K = <9k,aé > K}, = <0kaar] 31>, K;, = <9kaaC > (21)

We still need a relation between the degrees of freedom u ;p of the numerical solution, the degrees of freedom
F Ip> G ;p and H i» approximating the fluxes and S ;» approximating the source. The best one would be an L?
projection but this would involve the numerical computation of space-time integrals with very high order
of accuracy, which may become prohibitively expensive for time dependent problems in three space dimen-
sions. Therefore we prefer to use a nodal approach where the degrees of freedom of the fluxes and the source
term are simply evaluated as the physical fluxes and the source at the respective degrees of freedom of the state
U pl+

Fip :fp(alq)7 alp = gp(a]q)’ ﬂlp = hp(alq)v 3‘,[, = Sp(alq)- (22)

All the stiffness matrices defined in (21) are singular, which is physically correct because we still have to intro-
duce the initial condition at t = 0 into Eq. (20). If we construct our nodal basis functions 0, in such a way that
the first degrees of freedom are located at different spatial points at relative time t = 0, grouped together in a
sub-vector L{(,’ , and all the other degrees of freedom are located at spatial points at later times t > 0, grouped
together in a sub-vector U ,» We can write the total vector of degrees of freedom as u p= (L{‘l) Ul ) The same

holds for the ﬁuxes and the source term, ic. .7-'* (}'?p,}'l ), *p = (¢" o> gl,,) , = (H?p,Hl )" and
S* = (S?p, S ! ) According to this definition, we mtroduce the following sub-matrix notatlon for the mass
matrlx and the stiffness matrices, where o may represent t, &, n or {, respectively,
MOO MOI Ka,OO Koz,Ol
M= (A_llo &11 )7 K= <1_<a,10 Ea,ll ) (23)

Note that the degrees of freedom of the state at relative time T = 0 are known from the reconstruction poly-
nomials wp(g, ") and due to Eq. (22) also the degrees of freedom of the fluxes and the source term at T = 0 are
known. Removing test functions of known degrees of freedom (i.e. canceling the first rows of the equation
system) and moving the degrees of freedom known from the initial condition onto the right-hand side of
the equation system we obtain from (20):

111771 eI 21 1175 ST 11 ¢l

K Uy, + K F, + K g}p KZI Hy, —MyS,
—KUY) — K F) — KIG Kﬁ,“’H?p +MPSY . (24)
Eq. (24) together with (22) form a nonlinear algebraic system for the unknowns u }p on the left-hand side and
all quantities with the superscript ‘0’ on the right-hand side are known from the initial condition at T = 0. We
propose to use the following iterative approach: the temporal stiffness matrix K,T(’,11 is universal and does nei-

ther depend on the mesh nor on the timestep nor on the equations to be solved. For all orders of accuracy and
for all numbers of space dimensions treated in this paper, it also could be inverted analytically and therefore

we obtain the following simple iteration scheme for I }p, where the superscript 7’ denotes the iteration number:

Z’/\{}];iﬂ _ (Krll) (Mllslz Kf;lllji—],i _Kzéll/g\l‘i _K]g;.nllz]/_\{l,i)
+ (K‘rll) (MIOSO _K; 10]_-0 _K" 10go K,{;OHO — KD 1ouo ) (25)

np
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Using symbolic linear algebra tools, we found analytically some very interesting properties of the matrices
Ae= (KR KG! Ay= (KRR A= (K TR (26)

using the space-time basis functions presented in Section 3.3. Although the matrices are almost fully pop-
ulated, all the eigenvalues of these matrices are zero, for any order of accuracy up to six and for any
number of space dimensions up to three. Furthermore, also all the matrices formed by an arbitrary linear
combination w;A4; + w24, + w3A; of these matrices have only eigenvalues that are all zero. We conjecture,
that this holds for any order and any number of space dimensions. Furthermore, the absolute values of
all eigenvalues of the matrix (Kj;'"')"'M]] are less than one. At least for linear hyperbolic PDE, this auto-
matically implies directly that the operator (25) is a contraction and therefore the scheme (25) is a con-
tractive fixed point iteration. According to the Banach fixed point theorem, the iterative scheme (25)
therefore has a unique solution and the convergence of the method to this solution is guaranteed, at least
under a suitable CFL stability condition. For linear homogeneous scalar equations we furthermore ob-
served (using analytical computations via symbolic algebra tools) that the method always converges
for any initial guess vector after at most M iterations. We think that the method (25) can be directly
interpreted as a discrete analogue of the Picard iteration for ODEs, see [52,81], since the matrix K},‘{“
is a discrete derivative operator in time and hence its inverse matrix (K3'')™" represents a discrete time
integration operator. R

The iterative scheme (25) is very simple, robust and efficient. As an initial guess value for U }p we sup-
pose a stationary solution of the PDE (15) to begin with. From the extensive numerical experiments
shown later in Section 6 of this paper we found that also for nonlinear systems only at most M or
M + 1 iterations were needed to reach convergence to a precision of 10~ using the iterative scheme
(25). Our observation is furthermore supported by the error estimate given in [81] for the continuous
Picard iteration, which states that the error is of the order O(A/*!) after M iterations. We remark that
due to the structure of the equation system (24), the second-order local space-time Galerkin schemes are
fully explicit and hence do not need any iteration. In the second-order finite volume case, the method
automatically reduces to the MUSCL scheme. Since (25) is based on a weak formulation of the PDE
using a nodal space—time finite element approach, only evaluations of physical fluxes and source terms
are required and no differentiation operations are needed, compared to the rather complicated Cauchy-
Kovalewski procedure used in the original ENO scheme [44] as well as in previous ADER schemes
[29,31,32,68,71,74] and other Cauchy—Kovalewski based methods [58,57,53,37]. Thus, (25) is very general
and can be applied also to complex hyperbolic systems such as nonlinear elasticity and relativistic mag-
netohydrodynamics, as seen later in Section 6.

3.3. Choice of the space—time basis

As already mentioned in the previous section the optimal way to connect the space-time degrees of
freedom for the fluxes and the source term with those of the vector of conserved variables would be
an L? projection. However, this would become prohibitively expensive in three space dimensions plus time.
Therefore, a nodal approach is chosen, leading to (22), where we take special care of using the minimal
number of space-time nodes necessary to reach the formal order of accuracy. In d space dimensions, the
optimal number of space-time degrees of freedom for a PyP, scheme with reconstruction polynomial
degree M is

.00 = LT 0s 4 @7)

The only restriction concerning the distribution of the nodes is that we have a sufficient number of nodes lo-
cated at 1 =0 to include the initial condition. The minimum number of nodes at 7 =0 is therefore
npor(d — 1,M). We choose the following simple distributions in one space dimension, on triangles in two

space dimension and on tetrahedra in three space dimensions:



M. Dumbser et al. | Journal of Computational Physics 227 (2008) 8209-8253 8219

k /
— = 2
(ékh‘ckl) (M— laM)7 ( 8)
J k /

(fjkzaﬂjkza?/k/)_( M_1'M— lM) (29)

i J k )

(Eits Miwas Cijuas Tijwa) = (M M —1'M— l’ﬁ)
forO<I<M, 0<ks<M—-I, 0K<j<M—-I1-k O0<Z<i<M-I—-Fk—j. (30)

The last point, corresponding to the singular case / = M in Eqs. (28)—(30), is inserted at the spatial barycenter
of the reference element at 7 =1, i.e.:

o 1 1
(fo...OMafo...OM) = (d——i—l"”’d——l—lJ)' (31)

In Figs. 3 and 4 we show the nodal distribution for a fourth-order local space-time continuous Galerkin
scheme in one space dimension and for a triangle in two space dimensions, respectively.

4. Formulation of the fully-discrete quadrature-free Py P,; DG schemes for general nonlinear hyperbolic systems

To derive the fully discrete form of the PyP,, schemes we multiply the conservation law (14) with a test
function @, and integrate over the space—time element 7" x [¢"; " + A#], using integration by parts in space:

"+At 0 "+At . t"+At a(pk . t"+At
/ / qsk—updth+/ / dikF,,-fidet—/ / F dth_/ / @,S,dV dt,
n Ot m or(m m 7(m) @x 7(m)

(32)
with ﬁp = (f» &> hp) and 0@, /OX = (%,%,%). Furthermore, /i = (ny,n,,n.)" is the outward pointing unit
normal vector on the surface 07" of the element. In classical DG schemes [18,17,15,13,20] the fluxes and
source terms in (32) are computed using the same piecewise polynomials of degree N as used for the represen-
tation of the numerical solution u,, i.e. F =F »(uy) and S, := S,(u,). In this paper we propose to use instead
the solution of the local space— t1me Galerkm scheme (24) w1th polynomlal degree M to compute the fluxes and
source terms in (32), i.e. we use F ]—" (Fp, Gy, ,,) and S, := S,,. To define the surface integral a numer-
ical flux must be introduced. Smce we want to construct quadrature-free schemes, it is natural to use also the
space—time solution obtained for the fluxes from (24). We therefore use the four-argument flux function
F ' = F* ", ,u,, .7-' Va o) introduced in [29], which allows an analytical integration over the element bound-
ar1es It cons1sts of a classmal two-point interface flux F¢ » ) as a leading flux, which depends only on the left
and right states at the space-time barycenter of each element interface, and a four-argument corrector flux

©) that takes into account the whole polynomial space-time representation of the states on the left and right
of the interface and which is a /inear function in its arguments and hence allows analytical integration:

10

ul
.
~

1 2 3 4 &

Fig. 3. Distribution of the space-time nodes for the fourth-order local space-time continuous Galerkin scheme in one space dimension
plus time.
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Fig. 4. Distribution of the space-time nodes for the fourth-order local space-time continuous Galerkin scheme in two space dimensions
plus time.

FyUy Uy, Fo P ) = FPWUG (E( 72,0, Uy (S, 72),0) + F,0 Uy Uy FLLFD). (33)
Here, 71, 7, and 7 denote the space—time barycenter of the element face. In this paper, we decide to choose the
Rusanov flux as leading and corrector flux due to its simplicity, robustness and generality. As described in
detail in [29] the signal velocities are once computed using the states at the element face space-time barycenter
and then are frozen, i.e. kept constant, for the whole face inside the corrector flux.

Integrating the first term in (32) in space and time, introducing the numerical flux, and rewriting the third
term over the space-time reference element Tz x [0; 1] we get the following expression of our fully discrete one-
step PyPs schemes:

[gpk,@](u;’;l—ayp 7l / /a . <1>th o, u,,F, 7 -ndsde

a(Pk * a(Pk * a@k * _ *
(< oe JF >+<W,Qp>+<a—c77{p>) —<¢k,8p>. (34)

Note that the local space-time Galerkin solution U, as well as the resulting fluxes 7, G,, H, and the source
term S, are related to the reconstructed solution w, = wp(é, t") of degree M at time " via the local space-time
continuous Galerkin scheme (24) and the reconstructed solution w, at time ¢" is related to the original numer-
ical solution u,, of (34) via the reconstruction operator (11) and the generalized conservation property (12), i.e.
we have the dependency U, = U,(w,(u,)) and similarly also for the fluxes and source terms. Note that a pure
DG scheme is recovered by setting N = M, i.e. w, = u, and the pure finite volume case is obtained by setting
N =0, i.e. the i, reduce to the cell averages u,.

Due to the linearity of the corrector flux in its four arguments, flux computation and space—time integration
can be exchanged. To perform this integration analytically, we introduce the following mesh-independent flux
matrices, which can be precomputed once and then stored:

1
FYe = / / @, dy, dy,dr, (35)
0 Jo(Tg),
1
= O .70, 7) ~ 0E 7). ) (36)
0 Tg
1
Rt = / / L BOEG ) = 0@ 7). D) (37)

Here, e and e* are the local numbers of the considered common element interface between element 7 and its
neighbor element 7 as seen from each element, respectively, and / takes into account the possibly different
orientations of two tetrahedral faces due to rotation and has a meaning only in the three-dimensional case.
The element faces are parametrized by the face parameters y; and y,, which are mapped to the volume coor-
dinates & by a mappmg function depending on the face number and the orientation. We furthermore use the
notation ®, = @ ((£€)(y,,1,))). For more details on the computation of the flux matrices in 2D and 3D, see
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[28] and [29]. The final form of the fully discrete scheme using the definition of the flux-matrices introduced

above yields
Ng |J —e Ty et h =
([, @) (it — i) + > " A 0T FO 4 BOF U Fi U P Fro Fi O F D) -

a@k ~ 6<I>k - a¢k 37+
(G )7 (G >% <ag 0)%,)
= (9,0,)S;, (38)

In the following, we summarize the necessary steps of the whole algorithm described in this section to perform
the update of the degrees of freedom i, from time " to time ¢’ + At:

~»

lg> lg»

(1) Reconstruction. Apply the PyP,, reconstruction algorithm described in Section 2 to the numerical solu-
tion u, at time ¢" represented by the piecewise polynomials of degree N to obtain the higher order recon-
struction polynomials w, of degree M, i.e. compute Wy, = W;,(il,,, ).

(2) Local data evolution. Use the reconstructed solution w, in each element as initial condition for the local
continuous space-time Galerkin method presented in Section 3. Solve for U, via the iterative scheme (25)

to obtain U, = Uy (Wag), -7:117 f/p(wmq) g/p glp(wmq) HIP Hlp(wmq) and Slp = S/p(wmq)

(3) Solution of the Riemann Problem. Solve the Riemann problem at the interface approximately using the
space-time polynomials of the state, the fluxes and the source terms generated in the previous step. A
quadrature-free flux integral can be obtained using the special four-argument numerical flux function
introduced in [28].

(4) Update. Update the degrees of freedom i, from time level » to time level n + 1 according to the quad-
rature-free formulation (38).

5. Linear stability analysis and numerical convergence studies
5.1. von-Neumann stability analysis

To assess the stability of the proposed PyP,, schemes we perform a von-Neumann stability analysis, see e.g.
[45] for details, applying the schemes to the linear scalar advection equation in one space dimension

Ou Ou
— =0, R 0. 39
n +a - aceR, a> (39)
As usual for a von-Neumann analysis, we suppose an equidistant partition of a periodic computational do-
main Q = |J 7/ with element length Ax, where the degrees of freedom of the numerical solution of (39) at time

" are written for each element 7V in terms of a single vector Fourier mode of the form
(1) = Uje™ (40)

with the amplitude vector U 7 at time ¢, the wavenumber k and the imaginary unit i* = —1. Applying the lin-
ear PyP), reconstruction operator proposed in Section 2 to the degrees of freedom (40) we obtain a Fourier
mode representation for the degrees of freedom of the reconstructed solution as w’ (1) = W;’(f/ n k)elAr,
where the amplitude vector W/} = W”(U " k) is a function of the amplitude vector U ! and the wavenumber
k. It depends on the reconstruction operator and its expression is quite complicated, but it can be computed
using modern computer algebra systems. Finally, the time discretization technique introduced by the local
space-time continuous Galerkin methods proposed in Section 3 is applied and the result for the space-time
degrees of freedom I/} is inserted into the fully discrete one-step scheme (38). Then, the amplification factor
matrix G,,, which is a function of the Courant number CFL = aA¢ /Ax and the reduced wavenumber ¢ = kAx
can be determined from the relation U"™' = G,,(¢,CFL)U". The eigenvalues of G, are then computed
numerically. The method is stable if the largest eigenvalue of G,,; is less than one for all reduced wavenumbers
0 < ¢ < m. The maximum admissible Courant numbers for all possible PyP,, schemes up to fifth-order of
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Table 1

Stability limits for PyP), schemes from second- to fifth-order of accuracy

CFLppnax N=0 N=1 N=2 N=3 N=4
M=1 1.00 0.33

M=2 1.00 0.32 0.17

M=3 1.00 0.32 0.17 0.10

M=4 1.00 0.32 0.17 0.10 0.069

accuracy in space and time are given in Table 1. From these results we can deduce that it is the polynomial
degree N of the data representation that governs the stability of the method and nof the polynomial degree
M of the reconstruction operator. Hence, the new class of schemes with N > 0 and M > N allows for larger
time steps than the pure DG method of the same order.

5.2. Numerical convergence studies on unstructured meshes

5.2.1. Two-dimensional Euler equations

The convergence studies of the two-dimensional version of our PyP,, schemes are carried out solving the
Euler equations of compressible gas dynamics, with conservative variables u, = (p, pv;, pE)T and the flux ten-
sor defined as

P
ﬁp:F[,,-: pviv; +p &y |- (41)
vi(pE + p)
To close the system we use the equation of state of a perfect gas
Loy, 2
p=(y—1)(pE—§p(u +v)>~ (42)

We consider the smooth two-dimensional example of a convected isentropic vortex given for example by Hu
and Shu [47]. The initial condition is a linear superposition of a homogeneous background field and some per-
turbations o:

(p,u,v,p) = (1+3p, 1 +3u,1 +6v,1 + 3p). (43)

The perturbations of the velocity components « and v as well as the perturbations of entropy S = pﬂ and tem-
perature T of the vortex are given by

du € 12(=-(r=75) —1e .
B - 7= _ U= 44
(61}) TN ( (x=35) )’ 65=0, 8 8ym? © (44)

with 72 = (x — 5)” + (y — 5)%, the vortex strength e = 5 and the ratio of specific heats y = 1.4. If we define the
relationship between density, pressure and static temperature in a non-dimensional fashion so that the gas
constant becomes equal to unity, we obtain the following perturbations of the primitive variables density
and pressure:

Sp=(1+8T)7T—1, dp=(1+08T)"1—1. (45)

The computational domain is Q = [0; 10] x [0; 10] and four periodic boundary conditions are imposed. After
one period of # = 10, the exact solution is given by the initial condition (43). For measuring the error between
the numerical solution u, and the exact solution u;, we first apply the reconstruction operator in order to get
w, from u, and then we use the continuous Z*-norm

ol—

[[wp — u;HLZ(Q) = (/Q [y, — Me|2dV) ) (46)
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in which the integration is approximated using Gaussian integration formulae with appropriate order of accu-
racy. We use the sequence of irregular triangular meshes shown in Fig. 5 (top) and set the Courant number to
0.7/(2N + 1), except for the fifth- and sixth-order schemes where we use 0.5/(2N + 1). The tolerance for the
iterative solution of the nonlinear system arising from the local continuous space-time Galerkin method (24)
via the iterative scheme (25) is set to 10~ for the Euclidean norm of the vector AU, = U };f“ - Z/l,ll’f . This
rather small tolerance is kept constant throughout the paper unless something else is explicitly specified.
The results obtained for all possible PyP,, schemes using the linear reconstruction operator as described in
Section 2 are shown in Table 2 from second- to sixth-order of accuracy in space and time. Similar to the struc-
ture shown in Fig. 1 we present the pure finite volume schemes on the left of the table and the results obtained
with pure DG schemes are reported on the diagonal, the intermediate PyP,, schemes are shown in between.
The L? errors with the associated convergence rates for the density are presented. The first column of Table 2
entitled N characterizes the reciprocal mesh size and denotes the number of triangle edges used per space
dimension. Note that there are two numbers given in this column, separated by a slash. The first number refers
to the mesh size used for the finite volume schemes, the second number is valid for all the other PyP,, schemes.
From Table 2 we conclude that for smooth problems high order finite volume schemes seem to be less accurate
than the mixed PyP;, schemes and the pure DG schemes of the same accuracy on the same mesh. Further-
more, we observe that in this test case the PyP,, schemes with N < M but N close to M are as accurate as
the pure DG schemes, in particular on the finer meshes. For a quantitative efficiency comparison we also give
the total CPU times in seconds in Table 3 as well as the total time in microseconds needed for all schemes to
perform one entire time step per element (for all conserved variables), including reconstruction, iterative solu-
tion of the equations resulting from the local space-time Galerkin method and computation of the quadra-
ture-free fluxes in the fully discrete schemes. The times given in Table 3 were measured on one CPU core
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Fig. 5. Sequence of triangular meshes used for the two-dimensional convergence studies (top), and sequence of tetrahedral meshes used for
the three-dimensional convergence studies (bottom).
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Table 2

Two-dimensional PyP,, schemes from second- to sixth-order of accuracy applied to the Euler equations

Ng ? 0, L? 0, I* Op > Op »r 0op L Op
02 PyP, PP,

24/16 2.17E—01 5.56E—02

32/24 1.27E-01 1.9 224E-02 22
64/32 378E-02 1.7 9.75E-03 29
128/64  9.97E-03 1.9 1.87E-03 24

03 PyP> PPy PrP

24/16 1.72E-01 3.17E-02 1.25E-02

32/24 8.67E-02 24 7.11E-03 3.7 481E-03 23
64/32 1.66E-02 24 2.10E-03 42 2.53E-03 22
128/64  2.40E—-03 2.8 1.35E-04 4.0 3.65E-04 28

04 PyP3 PP3 P,P; P3Ps

24/16 4.45E—-02 2.46E—02 3.37E-03 4.47E-03

32/24 191E-02 29 3.86E-03 4.6 6.85E-04 3.9 8.86E—-04 4.0

64/32 1.41E-03 3.8 1.10E-03 44 1.96E-04 4.4 2.86E-04 39

128/64  8.78E—05 4.0 4.06E-05 438 1.21E-05 4.0 1.90E-05 3.9

05 PyPy PPy PPy P3Py PyPy

24/16 3.54E-02 9.12E-03 1.20E-03 8.88E—04 8.78E—04

32/24 1.58E—02 2.8 1.I5SE-03 5.1 1.65E-04 4.9 1.36E—-04 4.6 146E-04 4.4

64/32 831E-04 42 239E-04 5.5 431E-05 4.7 3.23E-05 5.0 3.93E-05 4.6

128/64  3.14E-05 4.7 243E-06 6.6 2.75E-06 4.0 1.24E-06 4.7 1.56E-06 4.7

06 PyPs PPs P>Ps P3Ps P4Ps PsPs

24/16 1.83E-02 7.67E-03 6.50E—04 2.28E—-04 1.77E-04 2.11E-04

32/24 3.56E-03 5.7 1.06E-03 4.9 5.98E-05 5.9 2.07E-05 59 1.63E-05 59 194E-05 59
64/32 1.08E-04 5.0 1.83E—-04 6.1 1.08E-05 59 3.69E-06 6.0 2.82E-06 6.1 3.26E-06 6.2
128/48  1.49E—-06 6.2 1.I13E-05 6.9 1.48E-06 4.9 343E-07 59 2.63E-07 58 3.08E-07 5.8

Errors for density p are shown.

of an Intel Core 2 Duo computer with 2 GHz clock speed and 2 GB of RAM. We also give the CPU time
needed for one element update (EU), which is computed by dividing the total CPU time by the number of
time steps and the number of elements in the mesh. To be able to compare the CPU times between 2D and
3D computations as well as to allow a comparison with different hyperbolic systems, we also give the CPU
time per degree of freedom update (DU), which is the time per element update divided by the number of equa-
tions in the hyperbolic system and the number of degrees of freedom in the scheme used to represent the data,
i.e. Ly. We give this additional information to allow for a direct efficiency comparison with other methods,
such as e.g. high order finite difference schemes. Based on these CPU times we conclude that in 2D the
new class of intermediate PyP), schemes is much more efficient than pure finite volume or pure DG schemes.

Example: in order to reach an error of about 3 x 10 the pure fifth-order DG scheme (P4P;) needs approx-
imately 900 s. On the same 32> mesh the new PP method reaches the same error in only about 450 s and the
P,P; method even needs only about 300 s to reach this level of accuracy. For comparison, the computation
with th(S: fifth-order finite volume method (PyP,) takes about 2800 s on a 128” mesh to reach an error or
3x 107",

5.2.2. Three-dimensional ideal MHD equations

In this section we consider a more complicated hyperbolic system than the Euler equations used in the pre-
vious two-dimensional case. We solve the equations of ideal magnetohydrodynamics (MHD) in three space
dimensions. The MHD system introduces an additional difficulty for numerical schemes since the divergence
of the magnetic field must remain zero in time, i.e.

OB, n 0B, n OB,
ox Oy Oz

=0, (47)
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Table 3
Total CPU times in seconds associated to the results presented in Table 2 and (in bold letters) time in microseconds needed by the schemes
to perform one entire element update (EU) and one single degree of freedom update (DU) for the 2D Euler equations

Ng

02 PyPy PPy

24/16 2.2 23

32/24 5.4 7.5

64/32 44.0 17.9

128/64 408 145

ps/EU 7.5 83

us/DU 1.9 0.7

03 PyP, PP, PyP,

24/16 3.8 4.2 8.2

32/24 9.2 14.0 27.0

64/32 73.8 33.8 65.0

128/64 681 272 524

ps/EU 13 16 18

us/DU 3.1 1.3 0.8

04 PyP; PiPs PyPs P3Ps

24/16 8.1 8.4 16.8 27.3

32/24 19.5 28.4 56.6 91.6

64/32 151 68.1 136 221

128/64 1352 539 1077 1758

us/EU 25 31 37 43

us/DU 6.2 2.6 1.5 1.1

05 PPy PPy PPy P3Py PyPy

24/16 19.3 19.5 359 58.4 120

32/24 45.0 64.2 119 192 392

64/32 332 151 280 450 925

128/64 2829 1145 2126 3480 7193

ps/EU 52 65 73 85 98

us/DU 10 5.5 3.0 2.1 1.6

06 PyPs PyPs PyPs P3Ps PyPs PsPs
24/16 453 46.2 80.0 118 232 321
32/24 101 144 249 378 747 1034
64/32 688 327 573 876 1754 2466
128/48 8573 1381 2469 3840 7768 10,818
us/EU 140 140 150 160 180 210
ps/DU 34 11 6.1 4.1 3.1 25

which for the analytical problem is always satisfied under the condition that the initial data of B are diver-
gence-free. From the discrete point of view this is not necessarily guaranteed and hence extra care is required
in the discretization. In this article we use the hyperbolic version of the generalized Lagrangian multiplier
(GLM) divergence cleaning approach proposed in [23]. It consists in adding an auxiliary variable ¥ and
one linear scalar PDE to the MHD system to transport divergence errors out of the computational domain
with the artificial speed c¢;. This is quite similar as role of the pressure in the incompressible Navier—Stokes
equations. The augmented MHD system with hyperbolic GLM divergence cleaning has the state vector
u, = (p, pv;, pE, B;, )" and the following flux tensor:

P
pov; + (p+ égz)g’i/ — 3 BiB;
va :Fp,' = U[(pE +p+é§2) 7ﬁB,-(UkBk) (48)

U,'Bj — B,‘Uj + ¥s,;

ij
2
ChBi
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with the velocity vector & = v; = (u, v, w)" and the magnetic field vector B = B; = (B, B,, B.)". The equation of
state is

p=(%—UQﬂ—%W—§J- (49)

For the numerical convergence studies in 3D of the proposed quadrature-free PyP,, schemes, we solve a 3D
version of the 2D vortex test problem proposed by Balsara [4]. The fully three-dimensional version of the
problem is obtained by rotating the 3D domain @ = [—5; 5]’ by 45° around the y-axis. Six periodic boundary
conditions are imposed. The unstructured tetrahedral mesh sequence used for this test as well as the rotated
final computational domain Q are seen in Fig. 5 (bottom). The initial condition using the vector of primitive
variables, W, = (p,u,v,w,p,B,B,,B., 'I/)T, is

T
2 2
W, = (1,% + ou, 1 + Sv,g + 0w, 1 + dp, 8By, 0B, 8B., 0) (50)

with the following relations for the perturbations, using 3% = (Su, dv, 5w)" and 8B = (3B, 3B,,8B.)":

- 1 -

F=3VaL00", F=(1-% D% r=|f,

ST = %e‘““’%f x 7 OB = %eq(l’rz) ix T, (51)
dp = g (12 (1 = 2gr%) — diPm)e? =), (52)

The speed for the divergence cleaning is set to ¢, = 3 in the whole domain and the parameters xk and u are set
to k = 1 and p = /4 according to [4]. After one period at time # = 10 the exact solution is given by the initial
condition. Compared to the test case proposed by Balsara [4] we introduce an additional parameter ¢ in Eq.
(51) and (52), which plays a very important role in this test case when using very high order schemes. In [4], the
smallest error norm of the magnetic field obtained with the best second-order scheme on the finest mesh
(800 x 800 elements) was of the order 10>, This is precisely the order of magnitude of the perturbation 8B
at the radial boundaries of the computational domain, since the exponential function is never exactly zero,
but will always produce some small contributions. Since B, and B, have opposite signs on the left and right
and on the top and bottom boundary of Q, respectively, there is a jump in the magnetic field at the boundaries
due to the periodic boundary conditions. In the numerical convergence studies these discontinuities cause first-
order disturbances of the order 10~> and for sufficiently high order accurate schemes on sufficiently fine
meshes, the small jump at the boundary will lead to dominant first-order errors. We therefore decide to use
the value g = % according to [4] only for schemes up to fourth-order of accuracy, since the smallest error ob-
tained on the finest mesh is still larger than 10, For the fifth- and sixth-order accurate schemes, which are
very accurate even on the coarse meshes used in this paper, we decide to use ¢ = 1. This leads to a more dif-
ficult test case due to a narrower Gaussian function, but resulting in jumps in the magnetic field of only 10~
at the boundaries, thus guaranteeing that the small discontinuities at the boundaries will not deteriorate our
convergence results. The iso-surfaces of pressure, u- and v-velocity components as well as several magnetic
streamlines are depicted in Fig. 6 on an unstructured 40° mesh after one full advection period at = 10 using
the P3P, scheme. With the notation N}, for unstructured tetrahedral meshes we denote the number of tetra-
hedron edges N per space dimension. The total number of elements inside such a N;. mesh is then roughly
between 6N;. and 7N, since the volume of the unit tetrahedron is only 1/6. The numerical solution obtained
with the P3P, scheme after one advection period is practically identical to the initial condition, as confirmed by
the convergence rates and error norms given for the velocity component w and the magnetic field component
B, shown for this three-dimensional test case in Tables 4 and 5.

The detailed CPU times (wallclock times) associated with our computations done on 64 CPUs of the
HLRB?2 supercomputer of the Leibniz Rechenzentrum in Miinchen, Germany, are given in Table 6. The
CPU times per element update (wallclock time x number of CPU/number of elements/number of time steps)
already include all the necessary MPI communications on the supercomputer. From the convergence results
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Fig. 6. Iso-surfaces for p, u and v (from left to right) and streamlines for the magnetic field B after one full advection period at = 10 using

a P3P, scheme on a 40° mesh containing 434,327 tetrahedrons.

Table 4

Three-dimensional PyP), schemes from second- to sixth-order of accuracy applied to the ideal MHD equations

Ng L? O, r? Op 12 O, L’ O, L? 0,

02 PPy

10 1.90E—01

20 4.39E—-02 2.1

30 1.60E—02 2.5

40 6.81E-03 3.0

03 PP, PP,

10 7.97E-02 1.68E—02

20 7.46E—03 3.4 2.44E-03 2.8

30 1.75E-03 3.6 8.11E-04 2.7

40 5.75E—04 3.9 3.18E—-04 33

04 PP; P,P; P;3Ps

10 5.20E-02 4.91E-03 2.20E-03

20 3.27E-03 4.0 4.03E-04 3.6 1.97E—04 3.5

30 5.40E—04 44 9.48E—05 3.6 4.70E—-05 3.5

40 1.20E—04 5.2 2.75E—05 43 1.42E—-05 4.2

05 PPy PPy P3P, P4Py

10 7.82E—02 1.04E—-02 4.83E—03 1.60E—03

20 3.68E—03 44 3.92E-04 4.7 2.26E—04 4.4 1.31E-04 3.6

30 3.65E—04 5.7 6.08E—05 4.6 3.87E-05 4.4 2.54E—05 4.0

40 5.12E-05 6.8 1.30E-05 5.4 8.52E—06 5.3 6.27E—06 4.9

06 P Ps P,Ps P3Ps PyPs PsPs

10 6.71E—-02 6.89E—03 1.78E—03 8.09E—04 5.75E—04

15 1.37E-02 3.9 7.94E—-04 53 2.63E—04 4.7 1.62E—04 4.0 1.34E-04 3.6
20 2.46E—03 6.0 1.21E-04 6.5 5.50E—05 5.4 3.60E—05 52 3.32E-05 4.9
30 1.96E—04 6.2 1.19E-05 5.7 6.35E—06 5.3 3.78E—06 5.6 4.36E—06 5.0

Errors for velocity field component w are shown.

for the velocity component w (Table 4) and the CPU times (Table 6) we clearly deduce again that the new
intermediate class of schemes is superior in efficiency compared to the standard DG method. This result holds
also for all the other classical Euler flow quantities p, u, v and p. However, for the magnetic field components
B., B, and B., the pure DG scheme is computationally the most efficient. Further work will be needed to devise
essentially divergence-free Py P, reconstruction operators on unstructured meshes, following the ideas given
for second-order TVD schemes in [4].
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Table 5

Three-dimensional Py P, schemes from second- to sixth-order of accuracy applied to the ideal MHD equations

Ng 2 O, 2 O, I* 0, 2 O, 2 0O,

02 PP

10 7.54E—01

20 1.83E—01 2.0

30 6.71E-02 2.5

40 2.81E-02 3.0

03 PP PP

10 3.07E-01 6.26E—02

20 2.88E—-02 34 8.30E—-03 2.9

30 6.54E—03 3.7 2.64E—03 2.8

40 2.03E-03 4.1 1.02E-03 33

04 P\ P; PyP3 P3P;

10 1.51E—01 1.80E—02 7.15E-03

20 1.10E—02 3.8 1.34E-03 3.7 5.65E—04 3.7

30 2.32E-03 3.8 3.11E-04 3.6 1.31E—04 3.6

40 7.34E-04 4.0 8.75E—-05 4.4 3.95E-05 42

05 PPy PPy P3Py P4Py

10 2.89E—-01 4.03E—02 1.67E—02 3.96E—03

20 1.38E—02 4.4 1.36E—03 4.9 6.90E—04 4.6 2.38E—04 4.1

30 1.34E-03 5.8 2.00E-04 4.7 1.07E—04 4.6 3.78E—-05 4.5

40 1.84E—04 6.9 4.12E-05 5.5 2.20E—-05 5.5 8.07E—06 5.4

06 P\ Ps PyPs P3Ps P4Ps PsPs

10 2.48E—-01 2.71E-02 6.00E—03 2.32E-03 8.81E—04

15 5.13E-02 39 2.99E-03 5.4 8.31E-04 4.9 3.92E-04 44 1.59E-04 4.2
20 9.30E-03 5.9 431E—04 6.7 1.68E—04 5.6 7.50E—05 5.7 3.13E-05 5.7
30 7.42E—04 6.2 3.93E-05 5.9 1.77E—05 5.5 1.33E-05 4.3 3.43E-06 5.5

Errors for magnetic field component B, are shown.

Thanks to the use of our very high order accurate schemes, the error norms decrease quickly even on very
coarse meshes using at most 40 elements per space dimension. We remind the reader that the best error norms
obtained in [4] with second-order TVD schemes were of the order 107> on 800 x 800 meshes for g = %, corre-
sponding to an equivalent total number of 512 x 10° grid points for a fully 3D computation as presented here.
The proposed P3P, scheme reaches this accuracy for the even more difficult test case with g = 1 and only needs
8.68654 x 10° degrees of freedom per variable on the finest mesh with 434,327 tetrahedrons. The number of
spatial degrees of freedom of a PyP;, scheme and the number of mesh points for a second-order TVD finite
volume scheme can be directly compared to each other and show the drastic benefits for memory storage effi-
ciency using very high order accurate methods compared to standard second-order TVD schemes.

We must emphasize that we did not obtain the correct convergence rates without the use of the divergence
cleaning approach. Although the error norms were small even without divergence cleaning, the full formal
order of accuracy could not be observed. This is a strong indication that high order schemes alone are not able
to resolve the problem of the divergence-free condition of the magnetic field for MHD computations on

unstructured meshes in multiple space dimensions.
6. Applications

To validate the new one-step time integration approach, obtained by the local space-time continuous
Galerkin formulation introduced in Section 3 of this paper, on problems with discontinuous solutions, we
solve a broad spectrum of different challenging hyperbolic systems on unstructured meshes in two and three
space dimensions. Therefore, the ideal and relativistic MHD equations as well as the equations of nonlinear
elasticity are tackled. Since we want to show the capability of the continuous space-time Galerkin predictor
method also in the presence of shock waves and other discontinuities, we now restrict ourselves to the pure
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Table 6
Total CPU times in seconds associated to the results presented in Tables 4 and 5 and (in bold letters) time in microseconds needed by the
schemes to perform one entire element update (EU)and one single degree of freedom update (DU) for the 3D ideal MHD equations

Ng

02 PP,

10 23.6

20 169

30 705

40 2466

us/EU 51

us/DU 1.42

o3 PP, PP,

10 37 71

20 297 590

30 1382 2653

40 4797 25,731

us/EU 99 113

us/DU 38 1.2

04 PP3 PyP3 P3P3

10 88 163 256

20 747 1453 2271

30 3422 6611 10,541

40 11,641 22,750 35,833

us/EU 216 253 285

us/DU 6.0 2.8 1.5

05 PPy PPy P3Py PyPy

10 205 364 561 987

20 1718 3131 4943 8700

30 7719 13,828 21,737 38,696

40 25,823 46,394 72,458 132,470

us/EU 533 575 641 729

us/DU 15 6.4 3.6 2.3

06 P\Ps P3Ps P3Ps P4Ps PsPs
10 591 982 1744 2439 3303
15 1905 3160 5963 8418 11,315
20 4543 7908 14,849 20,761 28,298
30 20,109 34,681 64,517 94,317 125,713
us/EU 1510 1563 1662 1890 2061
us/DU 42 17 9.23 6.0 4.1

finite volume case PyP,, in all those test cases with discontinuities, where we use the nonlinear WENO recon-
struction operator on unstructured meshes proposed in [28] and [29], since the nonlinear version of the general
Py Py reconstruction operator will be the subject of future work. We use the following parameters for the
WENO scheme [29]: 4; = 10°, r =8 and ¢ = 107"

6.1. Ideal MHD equations

6.1.1. 3D MHD shock tube problems

The first test case is a set of three Riemann problems, solved on a fully unstructured tetrahedral mesh (see
Fig. 7) consisting of 186,145 elements with characteristic mesh length 4 = ;i;. The computational domain is
Q =[-0.5;0.5] x [~0.01;0.01]> with periodic boundary conditions in y and z directions and transmissive
boundaries in x-direction. In our fully three-dimensional computations we use the PyP, scheme with charac-
teristic WENO reconstruction. The initial condition consists of two piecewise constant states (see Table 7),

separated by a discontinuity at x = 0.
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0.1

Fig. 7. The mesh for the 3D shock tube problems. Only the part x > 0 is shown.

Table 7
Initial states left (L) and right (R) for the 3D shock tube problems for the ideal MHD equations in 3D

p u v w P B, B, B,
Case 1 (Lax problem): y =14, ¢, =0, t, =0.14
L 0.445 0.698 0.0 0.0 3.528 0.0 0.0 0.0
R 0.5 0.0 0.0 0.0 0.571 0.0 0.0 0.0
Case 2 (Brio and Wu problem): y =2.0, ¢, =2, t, =0.10
L 1.0 0.0 0.0 0.0 1.0 0.75V/4n Vian 0.0
R 0.125 0.0 0.0 0.0 0.1 0.75V/4n Vian 0.0
Case 3 (Ryu and Jones problem): y = %, cp =2, t.=0.20
3L 1.08 1.2 0.01 0.5 0.95 2.0 3.6 2.0
3R 0.9891 —0.0131 0.0269 0.010037 0.97159 2.0 4.0244 2.0026

Values for y, ¢, and ¢, are also given.

The first test case is the classical Lax shock tube problem [51] for the Euler equations of compressible gas
dynamics. In our present test case, we solve the full MHD system (48), but with the magnetic fields switched
off. The exact reference solution is then given by the exact solution of the classical Riemann problem for the
Euler equations. The other two test cases correspond to the shock tube problems proposed by Brio and Wu
[11]and Ryu and Jones [63], for which an exact solution is available. For test case 2 we compute a numerical
reference solution in 1D using a second-order TVD finite volume scheme on 20,000 elements. In Fig. 8 we
show, for each test case, cuts through the domain Q along the x-axis using 400 equidistant sample points.
In all cases, we obtain an excellent agreement between the numerical solution, obtained on the 3D tetrahedral
mesh, and the 1D reference solutions.

6.1.2. MHD rotor problem

The second test case is the well-known MHD rotor problem proposed by Balsara and Spicer in [7]. It con-
sists of a rapidly rotating fluid of high density embedded in a fluid at rest with low density. Both fluids are
subject to an initially constant magnetic field. The rotor causes torsional Alfvén waves to be launched into
the fluid at rest. As a result the angular momentum of the rotor is diminished. The problem is set up on a
circular computational domain Q with radius » :% using a locally refined mesh towards the center of the
domain with a total number of 106,842 triangles. The characteristic mesh size is # = 0.003 for 0 < » < 0.13
and 2 = 0.005 for 0.13 < r < 0.5. The density of the rotoris p = 10 for 0 < » < 0.1 and p = 1 for the ambient
fluid. The rotor has a constant angular velocity w that is determined in such a way to obtain a toroidal velocity
ofv=w-r=1at r=0.1. The pressure is p = 1 in the whole domain and the magnetic field vector is set to
B= (2.5,0, 0)T in the whole domain. As proposed by Balsara and Spicer we apply a linear taper to the velocity
and density field in the range from 0.1 < » < 0.13 such that density and velocity match those of the ambient
fluid at rest at a radius of » = 0.13. The speed for the hyperbolic divergence cleaning is set to ¢, = 2 and
y = 1.4 is used. Transmissive boundary conditions are applied at the outer boundaries. A zoom into the com-
putational domain together with the triangular mesh and a contour plot of the magnetic pressure at time
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Fig. 8. Results for the 3D MHD shock tube problems (test cases 1-3 from top to bottom). PyP, scheme with characteristic WENO
reconstruction on unstructured tetrahedral mesh (squares) and reference solution (solid line).



8232 M. Dumbser et al. | Journal of Computational Physics 227 (2008) 8209-8253

Fig. 9. Zoom into the triangular mesh used for the MHD rotor problem together with a contour plot of the magnetic pressure at t = 0.25.

t = 0.25is given in Fig. 9. The whole domain together with the results for density, pressure, Mach number and
magnetic pressure obtained after 745 time steps at t = 0.25 are depicted in detail in Fig. 10. Compared to the
results presented by Balsara and Spicer we note a very good agreement. We emphasize that thanks to the
divergence cleaning, no spurious oscillations can be seen in the density field and in the magnetic pressure,
as reported by Balsara and Spicer for Godunov schemes without divergence cleaning. We used a PyP, scheme
with simple componentwise WENO reconstruction. The total CPU time was 76 min on one single CPU core of
an Intel Core 2 Duo computer with 2GHz clockspeed and 2 GB of RAM. From this information we can
deduce the total time needed for one element update being 57 ps. This CPU time needed for the nine equations
of the augmented GLM-MHD system together with a nonlinear WENO reconstruction compares very well to
the results obtained for the linear PyP, scheme in the section on convergence studies for the four equations of
the 2D Euler system (13 ps).

6.1.3. Orszag—Tang vortex system

The last test case that we consider for the ideal MHD equations is the vortex system of Orszag and Tang
[55] which was studied extensively in [56] and [22]. The computational domain is Q = [O;2n]2. We use the
parameters of the computation of Jiang and Wu [48], scaling the magnetic field by v4n due to the different
normalization of the governing equations. The initial condition of the problem is given by

(p,u,v,p,B,,B,) = (yz, —sin(y), sin(x), 7, —V4msin(y), Van sin(2x)> (53)

with w=B.=0and y = % The problem is solved up to ¢ = 5.0 using a PyP, scheme with componentwise
WENO reconstruction on an unstructured triangular mesh with 89,832 elements (# = 55). The divergence
cleaning speed is set to ¢, = 2.0. The results for pressure are shown in Fig. 11 for 1 =0.5, t =2.0, t = 3.0
and ¢ = 5.0, showing an excellent agreement with the fifth-order WENO finite difference solution computed
by Jiang and Wu [48] on a 192? Cartesian grid. The computation for 1533 time steps until # = 5.0 took
131 min on one CPU core of a 2 GHz Intel Core 2 Dual Core computer with 2 GB of RAM, leading again
to 57 us per element update.
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Fig. 10. Results for density, pressure, Mach number and magnetic pressure, obtained for the MHD rotor problem at ¢ = 0.25 using the
PyP, scheme with componentwise WENO reconstruction.

6.2. Relativistic MHD equations

The relativistic MHD (RMHD) equations form a very complicated hyperbolic system, for which an ana-
lytic or even semi-analytic version of the Cauchy—Kovalewski (Lax-Wendroff) procedure as proposed in
[34,32,68,29] becomes impossible for orders greater than two. This limitation is due to the fact that the prim-
itive variables that enter the physical flux cannot be expressed any more in a closed analytical form in terms of
the conserved quantities. The local space-time continuous Galerkin scheme proposed in this paper for local
data evolution in time is very general, since it is only based on flux and source evaluations at the local
space—-time nodes, and is therefore suitable to build a one-step scheme of order larger than two even for
the relativistic MHD equations. The details about this very interesting hyperbolic system can be found in
[3,82,38,46,61]. For the multidimensional version of the equations, we also have to enforce the divergence-free
condition of the magnetic field as in the non-relativistic MHD case. This is done again using the hyperbolic
divergence-cleaning approach proposed by Dedner et al. [23]. Using the notation of [82] the vector of con-
served variables is given in terms of the primitive variables p, v;, p, B; and ¥ by

D VP
o; PWiotlj — 'y
u,=| E | =| Wot — B’ —po; |- (54)
B; B;
I'4 I'4
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Fig. 11. Evolution of the pressure field of the Orszag-Tang problem at times ¢t = 0.5, ¢t = 2.0, t = 3.0 and ¢ = 5.0 (top left to bottom right)
using the PyP, scheme with componentwise WENO reconstruction.

The flux tensor is defined in multiple space dimensions as

VP,
VZWtotUin - by +ptot5ija
va = Fpi = ’))2Wt0tvl- - bobi . (55)
U,’Bj — Bin + 'I’Sij
C}%Bi
The equation of state is
14
_ 56
e=p+ r—1 (56)
the Lorentz factor, denoted as y in this section, is defined by
1
y=——, 57
1-% 57)

further quantities appearing in (54) and (55) are given by

-

2

B, B
b’ = yuBy, b = 5 + yvi(veBr), |b|2 = 7 + (UkBk)2 (58)



from which total enthalpy and total pressure are then finally defined as
1
Wtot:e+p+|b|27 ptot:p+§|b|2' (59)

In this entire section, the speed of light is supposed to be set to unity. The computation of the primitive vari-
ables p, v; and p from the vector u, of conserved quantities is very complicated. It can not be done analytically
but requires necessarily the use of an iterative technique such as Newton’s method. A very elegant, robust and
efficient way of transforming the conservative variables to primitive variables using the analytic inversion of a
third degree polynomial together with one nonlinear scalar equation to which subsequently Newton’s method
is applied is given in [82]. For the reader who may not be familiar with the procedure described in [82], we give
a very brief summary here. For the primitive variables, the following relations hold according to [82],

1 S
p=DVIZE, p=(1-FW-p/1, =—t—(0+28). (60

with § = Q,B; = WyB, and the auxiliary variable W. Introducing T° = EZQZ — 5 and algebraic manipula-
tions yield the following cubic equation for the auxiliary variable W in terms of the unknown #*:

=Py g e B
T r 2

This cubic equation can be solved analytically for W = W (#?) for a given #* and it is shown in [82] that all
solutions of (61) are real and that always the largest solution is the physically correct one. The unknown #*
can then be computed numerically via Newton’s method according to [82] from the nonlinear equation,

2y PNVR 4 T2 2W () + B
R

- T?
(W+Bz)2+7:0. (61)

—0*=0. (62)

6.2.1. One-dimensional shock-tube problems computed in 1D

We now solve a series of one-dimensional standard shock tube test cases proposed in [3]. For the detailed
description of our WENO reconstruction operator in 1D see [26]. The computational domain is Q = [0; 1] and
the initial condition consists of two piecewise constant states on the left and the right of the discontinuity
located at x = 0.5. The initial states are summarized in Table 8. In all test cases we use I' = 5/3 except for
the first test case where I' = 2 is used, according to [3]. The results of our one-dimensional computations
are shown in Figs. 12-16. We use 400 elements in all test cases, except for test case 3 where 800 elements
are used, and set the Courant number to CFL = 0.8 in all test cases, except in test case 4, where we use
CFL = 0.1. In all test cases, the PyP, scheme is used together with characteristic WENO reconstruction.
For a detailed description of the eigenstructure of the RMHD system see [3]. The reference solution is the
exact solution as published by Giacomazzo and Rezzolla [38]. For all test cases we note a very good agreement
between the computations carried out with the new third-order P c31313529.
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Fig. 12. Numerical results for the relativistic MHD Riemann problem 1 at z = 0.4. PyP, scheme on 400 elements (circles) and exact
reference solution [38].

solution. Note that the compound wave is present also in our third-order WENO computations as shown for
second-order TVD methods by Balsara in [3], but it is not present in the exact reference solution. See [38] for a
comment on this topic. In general, our proposed high order scheme remains essentially non-oscillatory. Only
small oscillations are visible in most of the test cases. The largest spurious oscillations are produced in test case
2 for the density p whereas the other flow quantities remain virtually non-oscillatory. The kink that is visible in
the density for the collision test problem number 4 corresponds to the well-known wall heating phenomenon,
also present in the computations shown in [3,82] and [46].

6.2.2. One-dimensional shock-tube problem computed in 2D

In this paragraph we show with a simple example that the extension of the one-dimensional PyP,, method
to unstructured multidimensional meshes is straightforward for any hyperbolic system, including even such
complicated PDE as the relativistic MHD equations. We solve again test problem number 5 of the previous
paragraph, but now on a two-dimensional computational domain Q = [0; 1] x [0;0.05] using a 400 x 20 mesh
composed of 17,628 triangles using the PyP, scheme with componentwise WENO reconstruction. The solution
of the problem for the density p is shown in Fig. 18 together with the triangular mesh. Since the maximum
admissible speed in relativistic MHD is the speed of light, we correspondingly choose the divergence cleaning
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Fig. 13. Numerical results for the relativistic MHD Riemann problem 2 at z = 0.4. PyP, scheme on 400 elements (circles) and exact
reference solution [38].

speed equal to the speed of light, i.e. ¢, = 1. A plot of our numerical solution obtained for density p is shown
in Fig. 18, together with the mesh. To give also a quantitative comparison against the one-dimensional refer-
ence solution, a cut through the computational domain is taken parallel to the x-axis at y = 0.025. The results
obtained with our PyP, scheme and the reference solution are depicted in Fig. 19 and show a very good agree-
ment between our numerical solution and the reference.

6.2.3. Convergence study of some selected Py Py, schemes for the relativistic MHD equations on triangular meshes
in 2D

Since the relativistic MHD equations form a very complicated and very challenging hyperbolic system, we
propose to perform again a convergence study of some selected PyP,, schemes on a very nice time-dependent
test case proposed originally in [83]. It consists in a space-time periodic Alfvén wave with large amplitude. The
initial condition at t=0 for the primitive variables is chosen to be p=p=1, u=B, =¥ =0, B, =
7By cos(kx), B, = nBysin(kx) and v = —v,B, /By, w = —v,4B./By. We use the wavenumber &k = 2x, the 2D com-
putational domain is Q = [0; 1] x [0; 0.4] with four periodic boundary conditions and I" = 3. With these param-
eters and By = n = 1, the speed of the Alfvén wave in positive x-direction is v, = 0.38196601125, see [83] for a
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Fig. 14. Numerical results for the relativistic MHD Riemann problem 3 at z = 0.4. PyP, scheme on 800 elements (circles) and exact
reference solution [38].

closed analytical expression for v,. Our final computation time is thus ¢t = 1/v, = 2.618033988, which is pre-
cisely the travel time that the Alfvén wave needs to complete an entire period. Table 9 shows the errors
and measured convergence orders in L? norm for the flow variable B.. The number N denotes the number
of triangle edges along the x-axis. We underline the very high accuracy that can be achieved at very low com-
putational cost with the P;Ps scheme already on the coarsest mesh with N = 4, see Fig. 17, compared to the
third-order finite volume scheme on the finest mesh with N; = 128. In all the computations we use a constant
Courant number of 0.5/(2N + 1), since our method has uniform accuracy in space and time. This could make
the new PyP,, schemes very suitable for highly accurate computations of long-time evolution problems in
astrophysics.

6.2.4. RMHD rotor problem

We finally propose to solve two relativistic versions of the MHD rotor problem of Balsara and Spicer [7].
The first is a variation of the relativistic MHD rotor test case already proposed by Del Zanna et al. [82], but
with lower rotational speed, in order to show the influence of the initial rotation speed on the produced wave
patterns. The second test case is exactly the same as proposed in [82]. We remark that in the second test case,
the Lorentz factor is very high (y ~ 10) and that high order methods may encounter difficulties with pressure
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Fig. 15. Numerical results for the relativistic MHD Riemann problem 4 at ¢ = 0.4. PyP, scheme on 400 elements (circles) and exact
reference solution [38].

positivity. Therefore, a strategy as described in detail in [6] should be applied. In the present paper, we simply
reduce the order of accuracy locally to one in those elements where negative pressures are encountered in the
time evolution phase.

In contrast to [82], who used a perfectly regular Cartesian mesh on the unit-square, we solve both test cases
in Cartesian coordinates on a circular computational domain with radius R = 0.5 using an unstructured trian-
gular mesh with a characteristic mesh spacing of # = 0.0025 towards the center and # = 0.005 at the outer bor-
der of the domain, leading to a total number of 121,196 triangles. The rotor has 